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Summary

A numerical analysis of Kaufman’s work on electrical
measurements through metal casing was applied to a layered
medium. A surface integral equation approach was used to
calculate the potentials in a finite-length borehole. It was
assumed that the sources are located along the vertical axis
and the inhomogeneities have axial symmetry. For this
analysis, the casing and layers are modeled as inhomo-
geneities in the host medium. The simulation had all elec-
trodes in contact with the inner surface of the casing.

The situation of the unknown casing conductance and
single target layer was simulated. It appears that the discon-
tinuity of the electric field corresponds to the boundaries of
the layer and the rate of change of the field is proportional to
the resistivity of the adjacent formation. To determine the
formation resistivity, two sets of electrode configurations
were used. One calculated the casing conductance and the
A

three-point measurement was used to approximate the second

other estimated the second derivative of the potential.

derivative. Using the expression from Kaufman’s paper, the
formation resistivity was obtained from a three-point meas-
urement of the potential through a highly conductive casing.
These calculated values compared closely to the resistivities
of the layer model.

Introduction

In recent years, there has been an increased interest to
measure formation resistivity through metal casing. Resis-
tivity measurements obtained by this method can aid in
characterizing existing reservoirs for effective recovery of oil
and gas, as well as geothermal heat, without the cost and
time of drilling new wells. The method is also useful to
monitor changes in resistivity caused by subsurface processes
such as injection or leakage of contaminants from a waste
site, flooding operations for enhanced oil recovery, or extrac-
tion processes of geothermal production.

Several patents have recently been issued which
describe methods and devices that are capable of measuring
formation resistivity through casing, (Kaufman, 1989; Vail,
1989; Gard et al., 1989). Currently, it is only known that
Vail has developed and tested such a device, called
Through-Casing Resistivity Tool (TCRT).

Kaufman (1990) investigated the behavior of the poten-
tial and its derivatives for a borehole with casing based on
models of an infinite-length conductive pipe in a homogene-
ous medium. He showed that the second vertical derivative
of the potential only varies with the casing conductance and
formation resistivity for receivers located in the "intermediate
zone" from the source. From his analysis, he concluded that
if the casing conductance, S, is known, then the formation
resistivity, p, measurements taken at that depth by using the
expression:
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where ¢ is the potential.

This study will focus on applying the expressions from
Kaufman’s paper for the formation resistivity from electrical
measurements through casing in a layered medium. A sur-
face integral equation approach is used to calculated the
potentials in a finite-length borehole. In this numerical
analysis, the borehole fluid, casing, and layer are modeled as
inhomogeneities in the host or background medium. It is
assumed that the sources are coaxial on the vertical axis and
the inhomogeneities have axial symmetry so that the cylindri-
cal coordinate system can be used. Due to the axisymmetry,
the fields can be described by a radial, p and vertical, z com-

ponent.

Integral Equation Formulation

Application of Green’s theorem to Poisson’s equation
will result in an expression of the potential as the superposi-
tion of a single-layer and double-layer potential. By employ-
ing the boundary conditions, a Fredholm integral equation of
the second kind is obtained.
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where 1 and r' are the field point and the source density
point on S, respectively.

This integral equation has the potential function ¢(r)
being expressed as the sum of the external source(s), ¢y(r)
and the product of a double layer potential and a normalized

conductivity contrast, C = Ac/cy. The conductivity contrast
is given by: Ao = 0y — ©;, where 0y and o; are the back-
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ground and disturbing body conductivities, respectively. The
double layer potential which is distributed over the surface of
the inhomogeneity contains the unknown boundary values,
¢(r') and the normal derivative of the Green’s function. The
axisymmetric half-space Green’s function, used for this prob-
lem, is derived in Schenkel and Morrison (1990) and can be
written as:
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where Jo(x) is the Bessel function of order zero and the
primed and unprimed values are the locations of the source
and field points, respectively.

To determine the unknown boundary potentials, let the
field point approach the surface of the disturbing body. The
surface integral which is improper must be evaluated at the
singular point. This evaluation can be found is Brebbia et al.
(1984). This results in an additional term to integral equation
@ forr=r".
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where 8(r, r*) equal one for r = r’ and zero elsewhere.

The integral equation (4) is solved by the approximation
method of point match over subsectional bases (see Harring-
ton, 1968). This method involves the expansion of the unk-
nown function into a series of weighting and basis functions
at N discrete points on the region of interest. Each basis
function exist only over a subsection in the region and the
corresponding weighting function will only affect the approx-
imation of the unknown function over that subsection. The
integral over the region is then approximated as a summation
of integrals over the subsections. By using a piecewise con-
stant weighting function, equation (4) can be approximated
by:
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This linear form of the integral equation must now be
satisfied at each N discrete points. As a result, a matrix
equation is obtained and can be solved to determine the unk-

nown basis functions. Once the basis functions are found,

equation (5) is used to calculate the potential at the field
point,

Results

Figure 1 illustrates the model used for this numerical
analysis. The simplified model consists of a finite-length
conductive casing filled with fluid embedded in a three-layer
medium. For simplicity, the resistivity of 10 Q'm was used
for the top layer, bottom layer, and borehole fluid. The cas-
ing has a resistivity of 10°% Q'm and length of 100 m. The
target layer was 3 m thick with its top located 49 m below
the surface. To approximate a layer of infinite extent, the
outer boundary of the layer placed at 5 km. The resistivity
values for the target layer ranged from 1 Q'm to 100 Qm.
For the purpose of concentrating on the target layer, the
cement which lines the casing was not included in the model.
The equally spaced potential electrodes, M, N, and M’, are
straddled by two current electrodes, A and B. All electrodes
are placed in contact with the casing. For models with single
current source, clectrode B is placed at "infinity", the remote
position.

The calculated voltage difference for a lateral-log
configuration is shown in Figure 2. These voltage
differences, which are normalized by the potential electrode
separation (MN = 0.5 m), represent an estimate of the electric
fields on the casing and are proportional to the current leak-
age. The separation from the source to center potential array,
AO, was 2.0 m. The resistivities of 1 Qm and 100 Q'm
were used for the target layer. The discontinuity of the
curves corresponds to the change in resistivity. For the con-
ductive layer, the increase rate of voltage drop is due to the
increase current leakage in to the adjacent formation. A
resistive formation has the opposite effect and a decrease rate

of change is observed through the target layer.

A well-log of through casing measurements with unk-
nown casing conductivity is simulated vsing the parameters
in Figure 1. For an unknown casing conductance, two elec-
trode configurations were used to obtain the formation resis-
tivity by equation (1). In Figure 3, the top electrode
configuration estimated the casing conductance and the bot-
tom configuration was used to calculate the formation resis-
tivity. To estimate the second derivative, three potential elec-
trodes, M, M’, and N, were needed. The current, I, is
applied at the source electrodes, A and B, which are in close
proximity to the potential electrodes. Due the large casing-
formation conductivity contrast, the voltage across the elec-
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trode pair, MN or NM’, is mainly dependent on the casing
resistance between the pair. From the voltage and cument
strength, the casing conductance can be calculated. Moving
the electrode B to the remote position, the current now must
flow through the casing and the formation. The voltages
differences, V| and V,, at their respective electrode pair, MN
and NM’, will reflect both the casing and formation resis-
tances. By subtracting the two voltages, a second derivative
approximation is obtained.

With the estimate of the casing conductance and second
derivative, the formation resistivity is calculated from equa-
tion (1). The numerical results for several resistivities of the
target layer are illustrated in Figure 4. The distance between
the potential and current electrodes was within the intermedi-
ate zone. In this zone, Kaufman indicated that the formation
resistivity can be determined from the potential and its
second derivative. For this analysis, the separation between
current and center potential electrode, AN, was 2.25 m. The
potential electrode spacings, MN and NM’, were 1.0 m.
From the plot, the calculated resistivity values are lower than
that of the model for the homogeneous (no layer) and low
resistivity (1 Qm to 5Qm) layers. The discrepancy
increases with decreasing resistivity, but decreases for
increasing layer resistivity. The resolution of the layer boun-
daries is about 2.0 m which corresponds to the length used to
approximate the second derivative of the potential.

Conclusion

The results obtained in the study appear to agree with
Kaufman’s investigation. An estimate of the formation resis-
tivity can be obtain from the potential, its second derivative,
and casing conductance by using equation (1). The vertical
resolution of the layer boundaries seem to be dependent on th
electrode spacing needed to approximate the second deriva-
tive.

The discrepancy of the calculated results and the model
resistivity may be attributed to numerical errors, such as
discretization of the model and approximating derivatives
with differences. The discrepancy may also be the result of
applying theory based on a homogeneous model to a more
complex model (finite-length and layer). Additional analysis
is needed to study the effects of variable casing conductance
and the cement layer, as well as the response near the end of

the casing.
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Figure 1: Model configuration and electrode array.
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Figure 2: Electric field response with increasing depth (left) for 2 1 Q'm and 100 Q'm

layer (dark area). Electrode array (right) used for electric field calculation.
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Figure 3: Electrode array used to calculate formation resis-
tivity. The casing conductance is estimated from the top
array and the second derivative of the potential is approxi-
mated with the bottom array.
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Figure 4: The resistivities calculated from the model of Figure 1 using
equation (1). Several resistivities were used for the target layer (dark
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